Sulfur-Directed Regioselective Radical Cyclization Leading to β-Lactams: Formal Synthesis of (\pm)-PS-5 and (+)-Thienamycin

Hiroyuki Ishibashi,* Chisato Kameoka, Hiroko Iriyama, Kazuya Kodama, Tatsunori Sato, and Masazumi Ikeda*
Kyoto Pharmaceutical University, Misasagi, Yamashina, Kyoto 607, Japan
Received October 10, 1994 ${ }^{\otimes}$

Abstract

A new method for the synthesis of β-lactams by tributyltin hydride ($\mathrm{Bu}_{3} \mathrm{SnH}$)-mediated radical cyclizations of N-ethenyl- α-bromo amides bearing sulfur-substituent(s) at the terminus of the N-vinylic bond is described. N-[2-(Phenylthio)ethenyl]- α-bromoacetamide (11), upon treatment with $\mathrm{Bu}_{3} \mathrm{SnH}$ in the presence of azobis(isobutyronitrile) (AIBN) in boiling toluene, underwent radical cyclization in a 4 -exo-trig manner to give β-lactam 13, but in low yield (22%), whereas N-[2,2-bis(phenylthio)ethenyl] congener 23 cyclized with a high degree of effeciency to give β-lactam 25 and a partially desulfurized lactam 13 in 70% combined yield. The effectiveness of the 4 -exo cyclization of 23 can be explained in terms of the high stability of the intermediate of radical 19b. Similar treatment of α-bromobutanamide 24 with $\mathrm{Bu}_{3} \mathrm{SnH}$ afforded, in 58% yield, β-lactam 26, which was transformed, via aldehyde 31, into the key intermediate 35 for the synthesis of (\pm)-PS-5 (36). 1,2Asymmetric induction in radical cyclizations leading to β-lactams was then examined. Cyclization of ($2 S, 3 R$)-3-acetoxy-2-bromo- N-[2-(phenylthio)ethenyl]butanamide (38) proceeded with no diastereoselectivity to give β-lactams $\mathbf{4 0 a}$ and $\mathbf{4 0 b}$ in approximately equal amounts. However, 2,2 -bis(phenylthio) congener 39 provided ($3 R, 4 R$)-2-azetidinone 41a and its ($3 S, 4 S$)-isomer 41b in a ratio of ca. 2:1. Similarly, ($2 R, 3 S$)-butanamide 47 afforded 48 a as a major product. Saponification of 48a followed by partial desulfurization of $\mathbf{4 9}$ gave alcohol 50 , which was then subjected to Mitsunobu inversion to afford 52 . This compound was converted into the key intermediate 56 for the synthesis of (+)-thienamycin (58). Reversibility of the radical cyclization leading to the β-lactams is discussed.

Introduction

In a series of papers ${ }^{1}$ concerning the use of radical cyclizations of α-haloamides in the synthesis of nitrogencontaining heterocyclic molecules, we reported that N vinylic α-chloroacetamides 1a and 1b underwent radical cyclization in different manners. ${ }^{2}$ Enamide 1a derived from 2-tetralone, upon treatment with tributyltin hydride $\left(\mathrm{Bu}_{3} \mathrm{SnH}\right)$ in the presence of azobis(isobutyronitrile) (AIBN), cyclized in a 4 -xxo-trig manner to give β-lactam 2, whereas enamide 1 lb derived from 2 -benzosuberone cyclized in a 5 -endo-trig manner to give γ-lactam 3. The difference between the modes of cyclization of 1 a and $\mathbf{1 b}$ was explained by assuming the electronic stability of radical intermediates 5 and 6. Thus, inspection of molecular models indicates that radical 5a, generated by 4 -exo-trig cyclization of carbamoylmethyl radical 4a, should be well-stabilized due to an excellent overlapping of the p-orbital of the radical center with the neighboring aromatic π-system, while the corresponding p-orbital of radical $\mathbf{5 b}$ is almost perpendicular to the aromatic π-system in its most stable conformation. Therefore, radical 4a is expected to cyclize so as to form more stabilized benzylic radical 5a in preference to α-acylamino radical 6a, while radical 4b cyclizes to α-acyl-

[^0]amino radical $\mathbf{6 b}$ in preference to the less stabilized benzylic radical 5b.

Shortly after our publication, Belletire et al. ${ }^{3}$ reported that enamide 7 bearing two phenyl groups at the terminus of the N-vinylic bond, upon treatment with $\mathrm{Bu}_{3}-$ SnH , gave β-lactam 9 . The highly stable intermediate radical 8, which is flanked by two phenyl groups, would play a crucial role in effecting the 4-exo cyclization. Our interest has now turned to the feasibility of using a sulfur substituent as a radical stabilizing group in the radical cyclizations leading to monocyclic β-lactams. We found that enamides bearing two phenylthio groups at the terminus of the N-vinylic bond such as 23 and 24 underwent radical cyclization with high efficiency to give β-lactams in good yields. The high regioselectivity of the cyclization coupled with the versatility of having sulfur substituents in the products make the method useful for the synthesis of many therapeutically important β-lactam antibiotics. This paper describes the results of our work in this area, including studies on diastereoselectivity in the radical cyclization of enamides bearing a chiral functionality. Applications of the methods to the formal synthesis of carbapenem antibiotics (\pm)-PS-5 and (+)thienamycin are also presented. ${ }^{4}$

Results and Discussion

Radical Cyclizations of \boldsymbol{N}-[2-(Phenylthio)ethe-nyl]- α-bromoamides. We initiated our investigation by examining the cyclization of enamides 11 and 12 having a phenylthio group at the terminus of the N-vinylic bond.

[^1]Scheme 1

Enamides 11 and 12 were prepared by condensation of (phenylthio)acetaldehyde with p-methoxybenzylamine followed by N-acylation of the resulting imine 10 with bromoacetyl bromide or 2-bromobutyryl bromide at -78 ${ }^{\circ} \mathrm{C}$ and then at room temperature in the presence of N, N diethylaniline.

A toluene solution of $\mathrm{Bu}_{3} \mathrm{SnH}$ (1.1 equiv) and AIBN (0.1 equiv) was added slowly to a boiling solution of 11 in toluene (0.01 M) over 3 h , and the mixture was further heated for additional hours until any starting material was not detected by TLC (General Procedure). After workup, the crude material was chromatographed on silica gel to give β-lactam 13 in 22% yield; a reduction product 15 and a rearrangement product 17 were also obtained in 40 and 6% yields, respectively. This result clearly indicates that the phenylthio group is capable of stabilizing the radical center of $19 a$ formed by 4 -exo-trig cyclization of carbamoylmethyl radical 18a. Formation of an unexpected product 17 from 11 may involve an intramolecular ipso attack of carbamoylmethyl radical $18 \mathbf{a}^{5}$ on the p-methoxyphenyl group to give spiro radical 20. This step is then followed by ring opening, with concomitant rearomatization, to give 17.

18a: $R=H$
18b: $R=E t$

19a: $R=H$ 19b: R = SPh

20

On the other hand, the cyclization of 2-bromobutanamide 12 proceeded more smoothly to give β-lactam 14 in 45% yield along with the reduction product 16 (14%). We previously noticed that alkyl-substituted carbamoylmethyl radicals show higher reactivity toward olefin cyclization than do nonsubstituted radicals. ${ }^{1 a}$ This is the case for the radicals $\mathbf{1 8 a}, \mathrm{b}$.

It should be noted that β-lactam 14 was obtained as a single stereoisomer. ${ }^{1} \mathrm{H}$ NMR spectra of 14 , which showed a small coupling constant ($J=2.1 \mathrm{~Hz}$) between

Scheme 2

Scheme 3

H-3 and H-4, established a trans relationship between the substituents at C_{3} and C_{4}.

Bis(phenylthio)-substituted enamides 23 and 24 were prepared by condensation of bis(phenylthio)acetaldehyde with p-methoxybenzylamine followed by N -acylation of the resulting enamine 22 (not imine) ${ }^{6}$ with bromoacetyl bromide or 2-bromobutyryl bromide in refluxing benzene in the presence of N, N-diethylaniline.

Enamide 23 was found to cyclize with high efficiency to give β-lactam 25 in 46% yield together with a partially desulfurized compound 13 (24%); only a 7% yield of the reduction product 27 was produced. The high combined yields (70%) of β-lactams 25 and 13 might be attributable to the high stability of radical intermediate 19 b which is flanked by two phenylthio groups. Similarly, enamide 24 afforded 26 (58\%) and 14 (trace), along with the reduction product 28 (14\%). Interestingly, when 2 equiv of $\mathrm{Bu}_{3} \mathrm{SnH}$ were used in the cyclization of 24 , compound 16 was obtained in 15% yield together with 26 (27\%), 14 (18%), and 28 (14%). Since enamide 28 was not desulfurized with $\mathrm{Bu}_{3} \mathrm{SnH}-\mathrm{AIBN}$, formation of compound 16 from 24 may be explained as follows. Attack of tributyltin radical ($\mathrm{Bu}_{3} \mathrm{Sn}^{\circ}$) on the phenythio group of β-lactam $\mathbf{2 6}$, formed by 4 -exo cyclization of $\mathbf{2 4}$, gives the radical

[^2]Scheme 4

intermediate 29, which is then reduced by $\mathrm{Bu}_{3} \mathrm{SnH}$ to afford the normal desulfurized lactam 14. On the other hand, ring-opening of the four-membered radical 29 provides new radical 30, which is then reduced by $\mathrm{Bu}_{3}-$ SnH to provide 16. In fact, when a boiling solution of 26 in toluene was treated slowly with $\mathrm{Bu}_{3} \mathrm{SnH}-\mathrm{AIBN}$, compound 16 was obtained in 7% yield along with the desulfurized lactam $14(27 \%){ }^{7}$ The result also suggested the ring-opening and cyclization between 29 and 30 to be reversible, ${ }^{8}$ because radical 29 is an intermediate for the cyclization of bromide 12 leading to β-lactam 14.

Formal Synthesis of (\pm)-PS-5. PS-5 (36) is a carbapenem antibiotic against Gram-positive and Gramnegative bacteria including β-lactamase-producing organisms. ${ }^{9}$ We examined a transformation of the radical cyclization product 26 into the key intermediate 35 for the synthesis of (\pm)-PS-5.

Treatment of 26 with AgClO_{4} in aqueous benzene ${ }^{10}$ afforded aldehyde 31, but in low yield (39\%). We decided to prepare 31 by using the mono(phenylthio) derivative 14. Although compound 14 could be obtained directly by radical cyclization of 12 , the partial desulfurization of 26 seemed to be the best choice for the preparation of 14 , since the overall yield of 26 from enamine 22 was much higher than was that of 14 from imine 10. As noted above, a slow addition of $\mathrm{Bu}_{3} \mathrm{SnH}$ into the solution of 26 resulted in the formation of the ring-opening product 16 as a byproduct together with the desired 14. However, heating 26 in boiling benzene in the presence of 2 equiv of $\mathrm{Bu}_{3} \mathrm{SnH}$ and a catalytic quantity of AIBN afforded 14 in excellent yield (86%). This may be because the radical intermediate 29 was immediately attacked by a large excess of $\mathrm{Bu}_{3} \mathrm{SnH}$ under the reaction conditions employed.
(7) N-Ethenyl- N-[(4-methoxyphenyl)methyl]butanamide was also obtained in 24% yield (see Experimental Section). This compound might arise from 16, since compound 16 was desulfurized with $\mathrm{Bu}_{3^{-}}$ SnH in the presence of AIBN in good yield (67%). The uneffectiveness of desulfurization of $\mathbf{2 8}$ giving 16 with $\mathrm{Bu}_{3} \mathrm{SnH}$ is probably due to the steric reason.
(8) Reversibility of cyclization of 4-pentenyl radicals has frequently been discussed, see: Castaing, M.; Pereyre, M.; Ratier, M.; Blum, P. M.; Davies, A. G. J. Chem. Soc., Perkin Trans. 2 1979, 287. Park, S.U.; Varick, T. R.; Newcomb, M. Tetrahedron Lett. 1990, 31, 2975. Jung, M. E.; Trifunovich, I. D.; Lensen, N. Tetrahedron Lett. 1992, 33, 6719. Ogura, K.; Sumitani, N.; Kayano, A.; Iguchi, H.; Fujita, M. Chem. Lett. 1992, 1487.
(9) Okamura, K.; Hirata, S.; Koki, A.; Hori, K.; Shibamoto, N.; Okumura, Y.; Okabe, M.; Okamoto, R.; Kouno, K.; Fukagawa, Y.; Shimauchi, Y.; Ishikura, T. J. Antibiot. 1979, 32, 262. Sakamoto, M.; Iguchi, H.; Okamura, K.; Hori, S.; Fukagawa, Y.; Ishikura, T. J. Antibiot. 1979, 32, 272. Yamamoto, K.; Yoshioka, T.; Kato, Y.; Shibamoto, N.; Okamura, K.; Shimauchi, Y.; Ishikura, T. J. Antibiot. 1980, 33, 796 .
(10) Mukaiyama, T.; Kobayashi, S.; Kamio, K.; Takei, H. Chem. Lett. 1972, 237.

Scheme 5

Oxidation of 14 with m-chloroperbenzoic acid (m CPBA) gave sulfoxide 32. Treatment of 32 with trifluoroacetic anhydride (TFAA) in the presence of 2,6 -lutidine afforded the Pummerer rearrangement product, which was then hydrolyzed with a saturated NaHCO_{3} solution to give aldehyde 31 in 73% yield from 14. Aldehyde 31 was converted to olefin 34 by employing a Peterson olefination. ${ }^{11}$ Thus, Grignard coupling of 31 with trimethylsilylmethylmagnesium chloride in refluxing diethyl ether afforded, in 53% yield, a ca. 1:1 mixture of two diastereoisomers of alcohol 33. Treatment of 33 with boron trifluoride diethyl etherate gave olefin 34 in 95% yield. Removal of the p-methoxybenzyl group was accomplished by treatment with ceric ammonium nitrate to give $\mathbf{3 5}{ }^{12}$ in 53% yield. Since compound $\mathbf{3 5}$ is convertible into (\pm)-PS-5, ${ }^{12,13}$ the present synthesis of 35 is a formal synthesis of (\pm)-PS-5. ${ }^{14}$
1,2-Asymmetric Induction: Formal Synthesis of (+)-Thienamycin. Recently, great interest has been devoted to the controlling stereochemistry in radical addition and cyclization reactions. ${ }^{15,16}$ Our attention was

[^3]Scheme 6

next turned to the 1,2 -asymmetric induction in radical cyclizations of enamides 38 and 39 bearing a chiral oxygen functionality at the side chain, in the hope that a new route to carbapenem antibiotic (+)-thienamycin (58) might result. Thienamycin possesses a wide spectrum of antibacterial activity, ${ }^{17}$ and the enormous commercial potential of thienamycin has resulted in intense and diverse synthetic effort. ${ }^{18}$

Enamides 38 and 39 were synthesized by reaction of 10 or 22 with ($2 S, 3 R$)-3-acetoxy-2-bromobutyryl chloride (37), ${ }^{19}$ prepared from l-threonine, by using a procedure similar to that described above for 11 or 23, respectively.

Treatment of 38 with $\mathrm{Bu}_{3} \mathrm{SnH}$ in the presence of AIBN gave a ca. 1:1 mixture of β-lactams 40 a and $\mathbf{4 0 b}$ in 39% combined yield. Thus, no diastereoselectivity was observed for the formation of β-lactams $40 \mathrm{a}, \mathrm{b}$ from 38 . We found, however, that bis(phenylthio) congener 39 provided a ca. 2:1 mixture of β-lactams 41a and 41b. The combined yield of $41 \mathrm{a}, \mathrm{b}$ was also improved to 64%. The stereochemistries of ($3 R, 4 R$)-isomer 41a and ($3 S, 4 S$)isomer 41b were confirmed according to a protocol reported by the Merck group. ${ }^{20}$ Thus, the mixture of $41 \mathrm{a}, \mathrm{b}$ was saponified by 0.1 N NaOH in pyridine at room temperature to give the corresponding alcohols 42a and 42b in 49 and 23% yields, respectively, after separation by chromatography on silica gel. The major alcohol 42a was then treated with methanesulfonyl chloride, and the resulting methanesulfonate 43a was heated with NaH CO_{3} in refluxing methanol to give (Z)-olefin 44. A similar sequence of reactions of the minor alcohol 42 b afforded (E)-olefin 45. ${ }^{1} \mathrm{H}$ NMR spectra showed that the olefinic proton signal of 44 appeared at $\delta 5.93$, whereas the resonance of the corresponding proton of $\mathbf{4 5}$ shifted down

[^4]Scheme 7

Scheme 8

field to $\delta 6.23$ due to the deshielding effect of the neighboring lactam carbonyl group. This was also the case for the methyl protons of 44 ($\delta 2.04$) and 45 ($\delta 1.73$). Since the base-promoted elimination of 43a,b has to proceed via an E2 mechanism, the stereochemistries of methanesulfonates giving 44 and 45 were assigned as 43 a and 43b, respectively, as depicted in Scheme 7, thereby confirming the stereochemistries of the original acetates 41a and 41b. The exact reason for the predominant formation of 41a from 39, however, is not clear at the moment.

Three stereocenters in 41b have the identical configuration to those in (+)-thienamycin (58), but, unfortunately, compound 41b was a minor product of the radical cyclization of 39 . Therefore, we examined the cyclization of enamide 47 having ($3 S$)-acetoxy group. The expected major product 48a (an enantiomer of 41a) might be convertible to the key intermediate $\mathbf{5 7}^{21,22}$ for the synthesis of (+)-thienamycin, through inversion of the oxygen functionality at the side chain.

The requisite acid chloride 46 for the synthesis of $(2 R, 3 S)$-butanamide 47 was prepared from D-threonine according to the reported procedure for the synthesis of 37 from L-threonine. ${ }^{19}$ Enamine 22 was then N -acylated with 46 to give enamide 47 in 79% yield. Treatment of 47 with $\mathrm{Bu}_{3} \mathrm{SnH}$ in the presence of AIBN afforded a mixture of β-lactams 48a and 48b in a ratio of ca. 2:1 and in 58% combined yield. Saponification of $48 a, b$ with
(21) Reider, P. J.; Rayford, R.; Grabowski, E. J. J. Tetrahedron Lett. 1982, 23, 379. Reider, P. J.; Grabowski, E. J. J. Tetrahedron Lett. 1982, 23, 2293.
(22) Recently, highly diastereoselective syntheses of 1β-methylcarbapenems from 57 have been reported, see: Murayama, T.; Yoshida, A.; Kobayashi, T.; Miura, T. Tetrahedron Lett. 1994, 35, 2271. Choi, W.-B.; Churchill, H. R. O.; Lynch, J. E.; Thompson, A. S.; Humphrey, G. R.; Volante, R. P.; Reider, P. J.; Shinkai, I. Tetrahedron Lett. 1994, 35, 2275. Uyeo, S.; Itani, H. Tetrahedron Lett. 1994, 35, 4377. Hirai, K.; Iwano, Y.; Mikoshiba, I.; Koyama, H.; Nishi, T. Heterocycles 1994, 38, 277.

Scheme 9

0.1 N NaOH gave a mixture of the corresponding alcohols. Although the mixture of alcohols could be separated by careful chromatography on silica gel, fractional recrystallization of the mixture from hexane/AcOEt was found to readily provide the major alcohol 49 in good yield (56%). One of the phenylthio groups of 49 was removed by treatment with $\mathrm{Bu}_{3} \mathrm{SnH}$ in the presence of AIBN (97%), and the resulting alcohol 50 was subjected to the Mitsunobu reaction with diisopropyl azodicarboxylate/ PPh_{3} /formic acid to give formate 51 in 79% yield. Acid hydrolysis of 51 gave (R)-alcohol 52 in 96% yield. Conversion of 52 into the known acetate 56 was achieved in a straightforward manner as outlined in Scheme 9. Protection of alcohol 52 with a TBDMS group gave 53. Oxidation of 53 with m-CPBA followed by Pummerer rearrangement/hydrolysis of the resulting sulfoxide in a manner similar to those described for the preparation of 31 from 32 provided aldehyde 54 in 96% yield from 53. Oxidation of 54 with alkaline KMnO_{4} followed by treatment of the resulting carboxylic acid 55 with lead tetraacetate gave acetate $\mathbf{5 6}^{23}$ in 65% yield from 54. Since removal of the p-methoxybenzyl group of 56 leading to 57 has been reported, ${ }^{23}$ the whole sequence of reactions herein described constitutes, in a formal sense, a total synthesis of (+)-thienamycin.

In conclusion, we have shown that the sulfur atom can act as an effective radical stabilizing group for the 4 -exotrig cyclization of N-ethenyl- α-bromo amides leading to β-lactams. The (phenylthio)methyl group incorporated into the cyclization products serves as a handle for the elaboration of functionalities required for the synthesis of therapeutically important carbapenem antibiotics. The present results also offer a useful methodology for controlling regiochemistry in radical addition and cyclization reactions onto enamines. Such work is now in progress.

Experimental Section

Melting points and boiling points are uncorrected. IR spectra were recorded with a JASCO IR-A-100 spectropho-
tometer. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were measured on a JEOL JNM-PMX 60, a JEOL JNM-EX 270, or a Varian XL-300 spectrometer for solutions in CDCl_{3}. δ Values quoted are relative to tetramethylsilane. Optical rotations were measured with a JASCO DIP-360 polarimeter. High resolution mass spectra were obtained with a Hitachi M-80 instrument at 20 eV . Column chromatography was performed on silica gel 60 PF_{254} (Nacalai Tesque, Inc.) under pressure.
(Phenylthio)acetaldehyde. To an ice cooled solution of sodium ethoxide ($8.98 \mathrm{~g}, 0.132 \mathrm{~mol}$) in ethanol (60 mL) was slowly added thiophenol ($14.54 \mathrm{~g}, 0.132 \mathrm{~mol}$), and the mixture was stirred for 15 min . Bromoacetaldehyde diethyl acetal ($20.81 \mathrm{~g}, 0.11 \mathrm{~mol}$) was then added and the mixture was heated under reflux for 2 h . After the precipitated salt had been removed by filtration, the solvent was evaporated off, the residue was dissolved in water (50 mL), and the solution was extracted with diethyl ether. The organic phase was dried over MgSO_{4} and the solvent was evaporated off to give crude (phenylthio)acetaldehyde diethyl acetal ($22.77 \mathrm{~g}, 91 \%$) as an oil: ${ }^{1} \mathrm{H}$ NMR $(60 \mathrm{MHz}) \delta 1.16(\mathrm{t}, J=7 \mathrm{~Hz}, 6 \mathrm{H}), 3.12(\mathrm{~d}, J=$ $6 \mathrm{~Hz}, 2 \mathrm{H}), 3.35-3.9(\mathrm{~m}, 4 \mathrm{H}), 4.66(\mathrm{t}, J=6 \mathrm{~Hz}, 1 \mathrm{H}), 7.1-7.5$ ($\mathrm{m}, 5 \mathrm{H}$). The acetal so obtained ($22.6 \mathrm{~g}, 0.1 \mathrm{~mol}$) was added to a mixture of $1 \% \mathrm{HCl}(200 \mathrm{~mL})$ and acetone $(100 \mathrm{~mL})$, and the mixture was heated under reflux for 1.5 h . Acetone was removed by evaporation, the residual aqueous layer was neutralized with a saturated NaHCO_{3} solution, and the solution was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The organic phase was dried over MgSO_{4}, the solvent was evaporated off, and the residue was distilled under reduced pressure to give (phenylthio)acetaldehyde ${ }^{24}$ ($11.86 \mathrm{~g}, 78 \%$): bp $105{ }^{\circ} \mathrm{C}\left(7\right.$ Torr); ${ }^{1} \mathrm{H}$ NMR (60 MHz) $\delta 3.57(\mathrm{~d}, J=3 \mathrm{~Hz}, 2 \mathrm{H}$), $7.29(\mathrm{~s}, 5 \mathrm{H}), 9.51$ (t , $J=3 \mathrm{~Hz}, 1 \mathrm{H}$).
α-Bromo- N-[(4-methoxyphenyl)methyl]- N-[2-(phenylthio)ethenyl]acetamide (11). p-Methoxybenzylamine (686 $\mathrm{mg}, 5 \mathrm{mmol}$) and $\mathrm{MgSO}_{4}(10 \mathrm{~g})$ were added to a solution of (phenylthio)acetaldehyde ($761 \mathrm{mg}, 5 \mathrm{mmol}$) in diethyl ether (20 mL) at $0^{\circ} \mathrm{C}$, and the mixture was stirred at the same temperature for $2 \mathrm{~h} . \mathrm{MgSO}_{4}$ was removed by filtration, the filtrate was concentrated in vacuo, and the resulting crude imine 10 was dissolved in toluene (20 mL). N, N-Diethylaniline ($746 \mathrm{mg}, 5 \mathrm{mmol}$) was added to the solution, and the mixture was cooled to $-78^{\circ} \mathrm{C}$. Bromoacetyl bromide ($1.01 \mathrm{~g}, 5 \mathrm{mmol}$) was added dropwise to the solution, and the mixture was stirred for 15 h during which time the bath temperature was allowed to warm to room temperature. The reaction mixture was washed with water, and the organic layer was dried (MgSO_{4}) and concentrated in vacuo. The residue was chromatographed on silica gel (hexane/AcOEt, 10:1) to give 11 (841 $\mathrm{mg}, 44 \%$) as an oil: ${ }^{1} \mathrm{H}$ NMR (60 MHz) $\delta 3.74$ (s, 3 H), 3.97 , 4.20 (both s, total 2 H), $4.84(\mathrm{~s}, 2 \mathrm{H}), 5.69(\mathrm{~d}, J=14 \mathrm{~Hz}, 1 \mathrm{H})$, 6.6-7.4 (m, 10 H). Anal. Calcd for $\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{BrNO}_{2} \mathrm{~S}: \mathrm{C}, 55.11$; H, 4.62; N, 3.57. Found: C, 55.03; H, 4.61; N, 3.51 .

2-Bromo- N-[(4-methoxyphenyl)methyl]- N-[2-(phenylthio)ethenyl]butanamide (12). Using a procedure similar to that described above for 11 , imine 10 was treated with 2-bromobutyryl bromide to give 12 (30\%) as an oil: ${ }^{1} \mathrm{H}$ NMR $(60 \mathrm{MHz}) \delta 0.7-1.15(\mathrm{~m}, 3 \mathrm{H}), 1.8-2.4(\mathrm{~m}, 2 \mathrm{H}), 3.70(\mathrm{~s}, 3 \mathrm{H})$, $4.0-5.0(\mathrm{~m}, 3 \mathrm{H}), 5.63(\mathrm{~d}, J=13.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.5-7.4(\mathrm{~m} 10 \mathrm{H})$. Anal. Calcd for $\mathrm{C}_{20} \mathrm{H}_{22} \mathrm{BrNO}_{2} \mathrm{~S}: \mathrm{C}, 57.15 ; \mathrm{H}, 5.28 ; \mathrm{N}, 3.33$. Found: C, 56.83; H, 5.26; N, 3.32.

Radical Cyclization of 11. General Procedure. To a boiling solution of $11(524 \mathrm{mg}, 1.38 \mathrm{mmol})$ in toluene (150 mL) was added a solution of $\mathrm{Bu}_{3} \mathrm{SnH}(442 \mathrm{mg}, 1.52 \mathrm{mmol})$ and AIBN ($23 \mathrm{mg}, 0.14 \mathrm{mmol}$) in toluene (75 mL) via a syringe during 3 h , and the mixture was heated under reflux for 2 h . After the solvent had been evaporated off, diethyl ether (20 m L) and 8% aqueous $\mathrm{KF}(20 \mathrm{~mL})$ were added to the residue, and the mixture was stirred vigorously at room temperature for 1 h . The organic layer was separated, dried $\left(\mathrm{MgSO}_{4}\right)$, and concentrated. The residue was chromatographed on silica gel (hexane/AcOEt, 7:1). The first eluate gave N-methyl- N-[2-

[^5](phenylthio)ethenyl]-4-methoxyphenylacetamide (17) (26 mg , 6%) as an oil: IR (CCl_{4}) $v 1675 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (60 MHz) δ $3.14(\mathrm{~s}, 3 \mathrm{H}), 3.76$ (s, 5 H), $5.56(\mathrm{~d}, J=13 \mathrm{~Hz}, 1 \mathrm{H}), 6.78$ (d, J $=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.9-7.5(\mathrm{~m}, 8 \mathrm{H})$. Anal. Calcd for $\mathrm{C}_{18} \mathrm{H}_{19}-$ $\mathrm{NO}_{2} \mathrm{~S}: \mathrm{C}, 68.98 ; \mathrm{H}, 6.11 ; \mathrm{N}, 4.47$. Found: C, 69.01; H, 6.22 ; $\mathrm{N}, 4.21$. The second eluate gave N -[(4-methoxyphenyl)methyl]-N-[2-(phenylthio)ethenyl]acetamide (15) ($174 \mathrm{mg}, 40 \%$) as an oil: IR (CCl_{4}) $v 1680 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR (60 MHz) $\delta 2.30(\mathrm{~s}, 3 \mathrm{H})$, 3.76 (s, 3 H), 4.86 (br s, 2 H), 5.56 (d, $J=14 \mathrm{~Hz}, 1 \mathrm{H}), 6.7-7.5$ (m, 10 H); exact mass calcd for $\mathrm{C}_{18} \mathrm{H}_{19} \mathrm{NO}_{2} \mathrm{~S} 313.1137$, found 313.1118. The third eluate gave 1-[(4-methoxyphenyl)methyl]4 -[(phenylthio)methyl]-2-azetidinone (13) ($95 \mathrm{mg}, \mathbf{2 2 \%}$) as an oil: IR (CCl_{4}) $v 1755 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}(270 \mathrm{MHz}) \delta 2.65$ (dd, J $=14.8,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.89(\mathrm{dd}, J=13.7,7.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.99(\mathrm{dd}$, $J=14.8,4.9 \mathrm{~Hz}, 1 \mathrm{H}$), 3.10 (dd, $J=13.7,4.8 \mathrm{~Hz}, 1 \mathrm{H}$), 3.59$3.67(\mathrm{~m}, 1 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}), 4.05(\mathrm{~d}, J=14.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.52(\mathrm{~d}$, $J=14.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.86(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.17(\mathrm{~d}, J=8.6$ $\mathrm{Hz}, 2 \mathrm{H}), 7.25,7.26$ (both s, total 5 H); exact mass calcd for $\mathrm{C}_{18} \mathrm{H}_{19} \mathrm{NO}_{2} \mathrm{~S} 313.1136$, found 313.1137 .

Radical Cyclization of 12. Following the general procedure, enamide 12 ($500 \mathrm{mg}, 1.2 \mathrm{mmol}$) was treated with Bu_{3} SnH and AIBN, and the crude material was chromatographed on silica gel (hexane/AcOEt, 10:1). The first eluate gave $N-[(4-$ methoxyphenyl)methyl]- N-[2-(phenylthio)ethenyl]butanamide (16) ($57 \mathrm{mg}, 14 \%$) as an oil: IR ($\left.\mathrm{CCl}_{4}\right) v 1665 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (60 MHz) $\delta 0.7-2.7(\mathrm{~m}, 7 \mathrm{H}), 3.76(\mathrm{~s}, 3 \mathrm{H}), 4.84(\mathrm{br} \mathrm{s}, 2$ $\mathrm{H}), 5.53(\mathrm{~d}, J=13 \mathrm{~Hz}, 1 \mathrm{H}), 6.7-7.6(\mathrm{~m}, 10 \mathrm{H})$. Anal. Calcd for $\mathrm{C}_{20} \mathrm{H}_{23} \mathrm{NO}_{2} \mathrm{~S}: \mathrm{C}, 70.35 ; \mathrm{H}, 6.79 ; \mathrm{N}, 4.10$. Found: C, 70.19 ; $\mathrm{H}, 6.77 ; \mathrm{N}, 3.64$. The second eluate gave ($3 R^{*}, 4 \mathrm{~S}^{*}$)) 3 -ethyl-1[(4methoxyphenyl)methyl]-4-[(phenylthio)methyl]-2-azetidinone (14) ($183 \mathrm{mg}, 45 \%$) as an oil: IR $\left(\mathrm{CCl}_{4}\right) v 1750 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (300 MHz) $\delta 0.94(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}), 1.49-1.82(\mathrm{~m}, 2$ $\mathrm{H}), 2.82$ (ddd, $J=8.0,6.2,2.1 \mathrm{~Hz}, 1 \mathrm{H}$), 2.91 (dd, $J=13.5,7.6$ $\mathrm{Hz}, 1 \mathrm{H}$), 3.12 (dd, $J=13.5,4.8 \mathrm{~Hz}, 1 \mathrm{H}$), 3.27 (ddd, $J=7.6$, $4.8,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}), 4.01(\mathrm{~d}, J=14.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.57$ ($\mathrm{d}, J=14.9 \mathrm{~Hz}, 1 \mathrm{H}$), $6.86(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.17(\mathrm{~d}, J=$ $8.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.17-7.29(\mathrm{~m}, 5 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (75.4 MHz) $\delta 11.5$, $21.4,36.7,44.1,55.3,55.9,57.3,114.2,126.6,127.9,129.1$, $129.5,129.7,135.3,159.2,169.7$. Anal. Caled for $\mathrm{C}_{20} \mathrm{H}_{23}$, $\mathrm{NO}_{2} \mathrm{~S}: \mathrm{C}, 70.35 ; \mathrm{H}, 6.79 ; \mathrm{N}, 4.10$. Found: C, 70.49; H, 6.68; N, 3.91 .
Bis(phenylthio)acetaldehyde (21). Diisobutylaluminum hydride (1.0 mol solution in hexane) ($26.3 \mathrm{~mL}, 26.3 \mathrm{mmol}$) was added slowly to a solution of ethyl bis(phenylthio)acetate ${ }^{25}$ $(7.28 \mathrm{~g}, 23.92 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(70 \mathrm{~mL})$ at $-50{ }^{\circ} \mathrm{C}$, and the mixture was stirred at the same temperature for 2 h . Methanol (5.5 mL) was added to the reaction mixture, and the solution was stirred at room temperature overnight. The precipitated salt was removed by filtration, and the residual mass was washed thoroughly with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic phases were concentrated in vacuo, and the residue was chromatographed on silica gel (hexane/AcOEt, 15:1) to give bis(phenylthio)acetaldehyde in $60-80 \%$ yield: ${ }^{1} \mathrm{H}$ NMR (60 $\mathrm{MHz}) \delta 4.69(\mathrm{~d}, J=4 \mathrm{~Hz}, 1 \mathrm{H}), 7.0-7.6(\mathrm{~m}, 10 \mathrm{H}), 9.20(\mathrm{~d}, J$ $=4 \mathrm{~Hz}, 1 \mathrm{H}$). This compound must be stored in a refrigerator because of its lability.
α-Bromo- N-[(4-methoxyphenyl)methyl]-N-[2,2-bis(phenylthio)ethenyl]acetamide (23). A mixture of bis(phenylthio)acetaldehyde (21) ($260 \mathrm{mg}, 1 \mathrm{mmol}$) and p-methoxybenzylamine ($137 \mathrm{mg}, 1 \mathrm{mmol}$) in benzene (10 mL) was heated under reflux with azeotropical removal of water for 2 h. After cooling the mixture containing enamine 22, N, N diethylaniline ($149 \mathrm{mg}, 1 \mathrm{mmol}$) was added, and the solution was heated again under reflux. To this was added dropwise bromoacetyl bromide ($404 \mathrm{mg}, 2 \mathrm{mmol}$) during 5 min , and the mixture was heated under reflux for further 10 min . The reaction mixture was washed with brine, and the organic layer was dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated. The residue was chromatographed on silica gel (hexane/AcOEt, 7:1) to give 23 (461 $\mathrm{mg}, 92 \%$) as an oil: $\operatorname{IR}\left(\mathrm{CCl}_{4}\right) v 1670 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $(60 \mathrm{MHz})$ $\delta 3.76(\mathrm{~s}, 3 \mathrm{H}), 3.86(\mathrm{~s}, 2 \mathrm{H}), 4.73(\mathrm{~s}, 2 \mathrm{H}), 6.55(\mathrm{~s}, 1 \mathrm{H}), 6.80$ (d, $J=9 \mathrm{~Hz}, 2 \mathrm{H}$), 6.8-7.4 (m, 12 H). Anal. Calcd for $\mathrm{C}_{24} \mathrm{H}_{22} \mathrm{BrNO}_{2} \mathrm{~S}_{2}$: C, $57.60 ; \mathrm{H}, 4.43 ; \mathrm{N}, 2.80$. Found: C, 57.63 ; H, 4.41; N, 2.75 .
2-Bromo- N-[(4-methoxyphenyl)methyl]- N-[2,2-bis(phenylthio)ethenyl]butanamide (24). Using a procedure
similar to that described above for 23 , enamine 22 was treated with 2-bromobutyryl bromide to give 24 (90%) as an oil: IR $\left(\mathrm{CCl}_{4}\right) \nu 1675 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (60 MHz) $\delta 1.0(\mathrm{t}, J=7 \mathrm{~Hz}, 3 \mathrm{H}$), $1.8-2.4(\mathrm{~m}, 2 \mathrm{H}), 3.75(\mathrm{~s}, 3 \mathrm{H}), 4.29(\mathrm{t}, J=7 \mathrm{~Hz}, 1 \mathrm{H}), 4.80(\mathrm{br}$ $\mathrm{s}, 2 \mathrm{H}), 6.59(\mathrm{~s}, 1 \mathrm{H}), 6.80(\mathrm{~d}, J=9 \mathrm{~Hz}, 2 \mathrm{H}), 6.8-7.5(\mathrm{~m}, 12$ H). Anal. Calcd for $\mathrm{C}_{26} \mathrm{H}_{26} \mathrm{BrNO}_{2} \mathrm{~S}_{2}$: C, 59.09, $\mathrm{H}, 4.96 ; \mathrm{N}, 2.65$. Found: C, 58.69; H, 4.84; N, 2.43.

Radical Cyclization of 23 . Following the general procedure, enamide 23 ($220 \mathrm{mg}, 0.44 \mathrm{mmol}$) was treated with $\mathrm{Bu}_{3^{-}}$ SnH and AIBN, and the crude material was chromatographed on silica gel (hexane/AcOEt, 7:1). The first eluate gave $N-[(4-$ methoxyphenyl)methyl]- N-[2,2-bis(phenylthio)ethenyl]acetamide (27) ($13 \mathrm{mg}, 7 \%$) as an oil: IR (CCl_{4}) $v 1665 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (60 MHz) $\delta 2.13(\mathrm{~s}, 3 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 4.80(\mathrm{~s}, 2 \mathrm{H})$, $6.7-7.5(\mathrm{~m}, 15 \mathrm{H})$. Anal. Calcd for $\mathrm{C}_{24} \mathrm{H}_{23} \mathrm{NO}_{2} \mathrm{~S}_{2}: \mathrm{C}, 68.38$; H, 5.50; N, 3.32. Found: C, 68.52; H, 5.70; N, 3.63. The second eluate gave 4 -[bis(phenylthio)methyl]-1-[(4-methoxy-phenyl)methyl]-2-azetidinone ($\mathbf{2 5}$) ($85 \mathrm{mg}, 46 \%$) as an oil: IR $\left(\mathrm{CCl}_{4}\right) \nu 1760 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}(270 \mathrm{MHz}) \delta 2.92(\mathrm{~d}, J=3.6 \mathrm{~Hz}$, $2 \mathrm{H}), 3.78-3.85(\mathrm{~m}, 1 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}), 3.90(\mathrm{~d}, J=14.8 \mathrm{~Hz}$, $1 \mathrm{H}), 4.40$ ($\mathrm{d}, J=4.6 \mathrm{~Hz}, 1 \mathrm{H}$), $4.63(\mathrm{~d}, J=14.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.82$ ($\mathrm{d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}$), 7.13 (d, $J=8.6 \mathrm{~Hz}, 2 \mathrm{H}$), $7.25-7.40(\mathrm{~m}$, 10 H). Anal. Calcd for $\mathrm{C}_{24} \mathrm{H}_{23} \mathrm{NO}_{2} \mathrm{~S}_{2}$: C, 63.38; H, $5.50 ; \mathrm{N}$, 3.32. Found: C, $68.75 ; \mathrm{H}, 5.68$; $\mathrm{N}, 3.40$. The third eluate gave $13(44 \mathrm{mg}, 24 \%)$ which was identical with that obtained from 11.

Radical Cyclization of 24. With 1.1 Equiv of $\mathrm{Bu}_{3} \mathrm{SnH}$. Following the general procedure, enamide 24 ($821 \mathrm{mg}, 1.55$ mmol) was treated with $\mathrm{Bu}_{3} \mathrm{SnH}$ and AIBN, and the crude material was chromatographed on silica gel (hexane/AcOEt, 7:1). The first eluate gave N-[(4-methoxyphenyl)methyl $]-N$ -[2,2-bis(phenylthio)ethenyl]butanamide (28) $97 \mathrm{mg}, 14 \%$) as an oil: IR $\left(\mathrm{CCl}_{4}\right) v 1665 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}(60 \mathrm{MHz}) \delta 0.93(\mathrm{t}, J$ $=7 \mathrm{~Hz}, 3 \mathrm{H}), 1.3-1.9(\mathrm{~m}, 2 \mathrm{H}), 2.35(\mathrm{t}, J=7 \mathrm{~Hz}, 2 \mathrm{H}), 3.79(\mathrm{~s}$, $3 \mathrm{H}), 4.83(\mathrm{~s}, 2 \mathrm{H}), 6.7-7.5(\mathrm{~m}, 15 \mathrm{H})$. Anal. Calcd for $\mathrm{C}_{26} \mathrm{H}_{27}$ $\mathrm{NO}_{2} \mathrm{~S}_{2}: \mathrm{C}, 69.45 ; \mathrm{H}, 6.05 ; \mathrm{N}, 3.12$. Found: C, 69.52 ; H, 6.15; $\mathrm{N}, 3.16$. The second eluate gave ($3 R^{*}, 4 S^{*}$)-3-ethyl-4-[bis(phen-ylthio)methyl]-1-[(4-methoxyphenyl)methyl]-2-azetidinone (26) ($405 \mathrm{mg}, 58 \%$) as an oil: IR (CCl_{4}) $v 1750 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (300 $\mathrm{MHz}) \delta 0.94(\mathrm{t}, ~ J=7.4 \mathrm{~Hz}, 3 \mathrm{H}), 1.55-1.78(\mathrm{~m}, 2 \mathrm{H}), 3.12$ (dddd, $J=7.5,6.5,2.1,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.49$ (dd, $J=4.7,2.1 \mathrm{~Hz}$, 1 H), 3.80 (s, 3 H), 3.82 (dd, $J=14.9,0.9 \mathrm{~Hz}, 1 \mathrm{H}$), 4.43 (d, J $=4.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.67(\mathrm{~d}, J=14.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.82(\mathrm{~d}, J=8.7 \mathrm{~Hz}$, $2 \mathrm{H}), 7.11(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.25-7.35(\mathrm{~m}, 10 \mathrm{H})$. Anal. Calcd for $\mathrm{C}_{26} \mathrm{H}_{27} \mathrm{NO}_{2} \mathrm{~S}_{2}$: C, $69.45 ; \mathrm{H}, 6.05 ; \mathrm{N}, 3.12$. Found: C, $69.31 ; \mathrm{H}, 6.05 ; \mathrm{N}, 3.10$. The third eluate gave 14 (trace) which was identical with that obtained from 12.

With 2 Equiv of $\mathrm{Bu}_{3} \mathrm{SnH}$. Following the general procedure, enamide 24 ($580 \mathrm{mg}, 1.1 \mathrm{mmol}$) was treated with $\mathrm{Bu}_{3}-$ $\mathrm{SnH}(640 \mathrm{mg}, 2.2 \mathrm{mmol})$ and AIBN, and the crude material was chromatographed on silica gel (hexane/AcOEt, 7:1). The first eluate gave 16 ($58 \mathrm{mg}, 15 \%$). The second eluate gave 28 ($71 \mathrm{mg}, 14 \%$). The third eluate gave 26 ($133 \mathrm{mg}, 27 \%$). The fourth eluate gave 14 ($66 \mathrm{mg}, 18 \%$).

Formation of 16 From 26. Following the general procedure, β-lactam 26 ($384 \mathrm{mg}, 0.85 \mathrm{mmol}$) was treated with $\mathrm{Bu}_{3}-$ $\mathrm{SnH}(373 \mathrm{mg}, 1.28 \mathrm{mmol})$ and AIBN ($21 \mathrm{mg}, 0.128 \mathrm{mmol}$), and the crude material was chromatographed on silica gel (hexane/ AcOEt, 10:1). The first eluate gave $16(21 \mathrm{mg}, 7 \%)$. The second eluate gave N-ethenyl- N-[(4-methoxyphenyl)methyl]butanamide ($47 \mathrm{mg}, 24 \%$) as an oil, whose ${ }^{1} \mathrm{H}$ NMR spectrum showed the presence of two rotamers in a ratio of ca. $4: 1:{ }^{1} \mathrm{H}$ NMR for major rotamer $(270 \mathrm{MHz}) \delta 1.00(\mathbf{t}, J=$ $6.6 \mathrm{~Hz}, 3 \mathrm{H}), 1.64-1.82(\mathrm{~m}, 2 \mathrm{H}), 2.52(\mathrm{t}, \mathrm{J}=7.3 \mathrm{~Hz}, 2 \mathrm{H})$, $3.77(\mathrm{~s}, 3 \mathrm{H}), 4.31(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.47(\mathrm{~d}, J=15.5 \mathrm{~Hz}, 1$ H), 4.82 (s, 2 H), 6.82 (d, $J=8.6 \mathrm{~Hz}, 2 \mathrm{H}$), 6.88 (dd, $J=15.5$, $9.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.12(\mathrm{~d}, J=8.6,2 \mathrm{H})$; exact mass calcd for $\mathrm{C}_{14} \mathrm{H}_{19}-$ $\mathrm{NO}_{2} 233.1415$, found 233.1437. The third eluate gave 14 (78 $\mathrm{mg}, 27 \%$).

Synthesis of 14 from 26. To a solution of $26(125 \mathrm{mg}, 0.28$ mmol) in benzene were added $\mathrm{Bu}_{3} \mathrm{SnH}$ ($178 \mathrm{mg}, 0.61 \mathrm{mmol}$) and AIBN ($5 \mathrm{mg}, 0.03 \mathrm{mmol}$), and the mixture was heated under reflux for 2 h . After usual workup, the crude material

[^6]was chromatographed on silica gel (hexane/AcOEt, 5:1) to give $14(82 \mathrm{mg}, 86 \%)$, which was identical with that obtained from 12.
(2S $\left.{ }^{*}, 3 R^{*}\right)$-3-Ethyl-1-[(4-methoxyphenyl)methyl]-4-oxo-2-azetidinecarboxaldehyde (31). From 26. AgClO_{4} (370 $\mathrm{mg}, 1.6 \mathrm{mmol})$ was added to a mixture of $26(181 \mathrm{mg}, 0.4 \mathrm{mmol})$ in benzene (1 mL) and water (0.08 mL), and the solution was stirred at room temperature in the dark. After stirring for 24 h , additional $\mathrm{AgClO}_{4}(100 \mathrm{mg}, 0.48 \mathrm{mmol})$ was added, and stirring was continued for a further 1 h . Diethyl ether (10 mL) was added to the reaction mixture, and inorganic materials were removed by filtration. The filtrate was washed successively with aqueous ammonia, brine, and water and then dried over MgSO_{4}. The solvent was evaporated off and the residue was chromatographed on silica gel (hexane/AcOEt, 1:1) to give $31(39 \mathrm{mg}, 39 \%)$ as an oil: $\mathrm{IR}\left(\mathrm{CCl}_{4}\right) v 1760,1725 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR (270 MHz) $\delta 1.00(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}$), $1.60-1.95(\mathrm{~m}$, 2 H), 3.12 (ddd, $J=8.3,5.9,2.6 \mathrm{~Hz}, 1 \mathrm{H}$), 3.59 (dd, $J=3.3$, $2.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 4.29(\mathrm{~d}, J=14.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.53$ (d, $J=14.7 \mathrm{~Hz}, 1 \mathrm{H}$), $6.86(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.15(\mathrm{~d}, J=8.6$ $\mathrm{Hz}, 2 \mathrm{H}$), $9.42(\mathrm{~d}, J=3.3 \mathrm{~Hz}, 1 \mathrm{H})$; exact mass calcd for $\mathrm{C}_{14} \mathrm{H}_{17}-$ $\mathrm{NO}_{3} 247.1208$, found 247.1191.
From 14. To an ice cooled solution of $\mathbf{1 4}(407 \mathrm{mg}, 1.19$ mmol) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(50 \mathrm{~mL}$) was added dropwise a solution of m-CPBA ($257 \mathrm{mg}, 1.19 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(15 \mathrm{~mL})$ during 40 min , and the mixture was stirred at the same temperature for 30 min . The reaction mixture was washed with a saturated NaHCO_{3} solution and dried over MgSO_{4}. The solvent was evaporated off, and the residue containing sulfoxide 32 was
 and TFAA ($500 \mathrm{mg}, 2.38 \mathrm{mmol}$) were added successively to the solution at $0{ }^{\circ} \mathrm{C}$, and the mixture was stirred at room temperature for 1 h. A saturated NaHCO_{3} solution (10 mL) was then added to the reaction mixture and the solution was stirred vigorously for 30 min . The organic layer was separated, the aqueous layer was further extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, and the combined organic phases were dried over MgSO_{4}. The solvent was evaporated off, and the residue was chromatographed on silica gel (hexane/AcOEt, 1:1) to give 31 ($214 \mathrm{mg}, 73 \%$ based on 14) which was identical with that obtained from 26.
($3 R^{*}, 4 S^{*}$)-3-Ethyl-4-[(R^{*})- and (S^{*})-1-hydroxy-2-(tri-methylsilyl)ethyl]-1-[(4-methoxyphenyl)methyl]-2-azetidinones (33). To a solution of (trimethylsilyl)methylmagnesium chloride (1 M solution in diethyl ether) ($0.99 \mathrm{~mL}, 0.99$ mmol) in dry diethyl ether (6.5 mL) was added a solution of 31 ($203 \mathrm{mg}, 0.82 \mathrm{mmol}$) in dry diethyl ether (3.7 mL), and the mixture was heated under reflux for 3 h . A saturated $\mathrm{NH}_{4} \mathrm{Cl}$ solution (5 mL) was added to the reaction mixture, and the organic layer was separated and dried over MgSO_{4}. The solvent was evaporated off and the residue was chromatographed on silica gel (hexane/AcOEt, 2:1) to give 33 (146 mg , $53 \%)$ as an oil: IR $\left(\mathrm{CCl}_{4}\right) v 3575,3400,1745,1720 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR spectral property (60 MHz), which exhibited two pairs of an AB quartet centered at $\delta 4.30(J=15 \mathrm{~Hz})$ and $4.41(J=$ 15 Hz) ascribed to the benzylic protons, indicated that compound 33 was a mixture of two diasteroisomers in a ratio of ca. 1:1. This mixture was used immediately in the next step.
($3 R^{*}, 4 R^{*}$)-4-Ethenyl-3-ethyl-1-[(4-methoxyphenyl)-methyl]-2-azetidinone (34). Boron trifluoride diethyl etherate ($462 \mathrm{mg}, 0.33 \mathrm{mmol}$) was added to a solution of $33(91 \mathrm{mg}$, $0.27 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$, and the mixture was stirred at the same temperature for 16 h . The reaction mixture was washed successively with water and a saturated NaHCO_{3} solution and dried over MgSO_{4}. The solvent was evaporated off, and the residue was chromatographed on silica gel (hexane/AcOEt, 3:1) to give 34 ($63 \mathrm{mg}, 95 \%$) as an oil: IR $\left(\mathrm{CCl}_{4}\right) \nu 1750 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \mathrm{NMR}(270 \mathrm{MHz}) \delta 0.95(\mathrm{t}, J=7.3 \mathrm{~Hz}$, 3 H), $1.57-1.83$ (m, 2 H), 2.83 (ddd, $J=7.9,6.3,2.0 \mathrm{~Hz}, 1 \mathrm{H}$), 3.52 (dd, $J=8.3,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 3.87(\mathrm{~d}, J=14.8$ $\mathrm{Hz}, 1 \mathrm{H}), 4.62(\mathrm{~d}, J=14.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.20(\mathrm{~d}, J=10.2 \mathrm{~Hz}, 1 \mathrm{H})$, 5.23 (d, $J=17.2 \mathrm{~Hz}, 1 \mathrm{H}$), 5.75 (ddd, $J=17.2,10.2,8.3 \mathrm{~Hz}, 1$ H), 6.85 (d, $J=8.6 \mathrm{~Hz}, 2 \mathrm{H}$), 7.15 (d, $J=8.6 \mathrm{~Hz}, 2 \mathrm{H}$); exact mass calcd for $\mathrm{C}_{15} \mathrm{H}_{19} \mathrm{NO}_{2} 245.1416$, found 245.1413 .
($3 R^{*}, 4 R^{*}$).4-Ethenyl-3-ethyl-2-azetidinone (35). A solution of CAN ($473 \mathrm{mg}, 0.82 \mathrm{mmol}$) in water (5.4 mL) was added to a solution of $34(67 \mathrm{mg}, 0.27 \mathrm{mmol})$ in acetonitrile (2.7 mL)
at $0^{\circ} \mathrm{C}$, and the mixture was stirred at the same temperature for 4 h and then at room temperature for 13 h . A saturated NaHCO_{3} solution (10 mL) was added to the reaction mixture, and the solution was extracted with AcOEt. The organic phase was washed with brine, dried $\left(\mathrm{MgSO}_{4}\right)$, and concentrated. The residue was chromatographed on silica gel (hexane/AcOEt, 3:1) to give 35 ($18 \mathrm{mg}, 53 \%$) as an oil, whose spectral properties were identical with those described in the literature: ${ }^{12}$ IR $\left(\mathrm{CCl}_{4}\right) v 3420,3240,1750 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}(270 \mathrm{MHz}) \delta 1.04(\mathrm{t}$, $J=7.6 \mathrm{~Hz}, 3 \mathrm{H}$), $1.64-1.93(\mathrm{~m}, 2 \mathrm{H}), 2.85$ (dddd, $J=8.3,5.9$, $2.3,1.0 \mathrm{~Hz}, 1 \mathrm{H}$), 3.81 (ddd, $J=6.9,2.3,1.2 \mathrm{~Hz}, 1 \mathrm{H}$), 5.17 (d, $J=10.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.30(\mathrm{~d}, J=17.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.94$ (ddd, $J=$ $17.2,10.1,6.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.16$ (br s, 1 H).
(2S,3R)-3-Acetoxy-2-bromo- N-[(4-methoxyphenyl)-methyl]- N-[(2-phenylthio)ethenyl]butanamide (38). According to a procedure similar to that described above for 11, imine $10(1.79 \mathrm{~g}, 6.61 \mathrm{mmol})$ was treated with $(2 S, 3 R)-3$ -acetoxy-2-bromobutyryl chloride (37$)^{19}(3.23 \mathrm{~g}, 13.2 \mathrm{mmol})$, and the crude material was chromatographed on silica gel (hexane/ AcOEt, 12:1) to give $38(1.04 \mathrm{~g}, 33 \%)$ as an oil: IR $\left(\mathrm{CCl}_{4}\right) v$ $1745,1670 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (60 MHz) $\delta 1.1-1.5(\mathrm{~m}, 3 \mathrm{H}), 1.82$, $1.93,2.05$ (both s, total 3 H), 3.78 (br s, 3 H), $4.3-5.0$ (m, 3 $\mathrm{H}), 5.2-6.4(\mathrm{~m}, 2 \mathrm{H}), 6.6-7.5(\mathrm{~m}, 10 \mathrm{H})$. This compound was used immediately in the next step.
(3R,4R)- and (3S,4S)-3-[(R)-1-Acetoxyethyl]-1-[(4-meth-oxyphenyl)methyl]-4-[(phenylthio)methyl]-2-azetidinones (40a,b). Following the general procedure, enamide 38 ($268 \mathrm{mg}, 0.56 \mathrm{mmol}$) was treated with $\mathrm{Bu}_{3} \mathrm{SnH}$ and AIBN in boiling toluene, and the crude material was chromatographed on silica gel (hexane/AcOEt, 3:1) to give an oily mixture of 40a and $40 \mathrm{~b}(88 \mathrm{mg}, 39 \%)$ in a ratio of ca. 1:1: IR $\left(\mathrm{CCl}_{4}\right) \nu 1755$, $1740 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (300 MHz) for one isomer (probably 40a): $\delta 1.313$ (d, $J=6.5 \mathrm{~Hz}, 3 \mathrm{H}$), 1.92 ($\mathrm{s}, 3 \mathrm{H}$), 2.94 (dd, $J=13.7$, $7.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.05-3.10(\mathrm{~m}, 1 \mathrm{H}), 3.13(\mathrm{dd}, J=13.7,4.7 \mathrm{~Hz}, 1$ H), 3.40 (ddd, $J=7.7,4.7,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 3.83(\mathrm{~d}$, $J=14.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.64(\mathrm{~d}, J=14.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.10(\mathrm{qd}, J=6.5$, $4.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.84(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.15-7.30(\mathrm{~m}, 7 \mathrm{H}) ;{ }^{1} \mathrm{H}$ NMR (300 MHz) for another isomer (probably 40b): $\delta 1.308$ (d, $J=6.4 \mathrm{~Hz}, 3 \mathrm{H}$), 1.96 ($\mathrm{s}, 3 \mathrm{H}$), 2.96 (dd, $J=13.7,7.1 \mathrm{~Hz}$, $1 \mathrm{H}), 3.05-3.10(\mathrm{~m}, 1 \mathrm{H}), 3.13$ (dd, $J=13.7,4.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.62$ (ddd, $J=7.1,4.7,2.1 \mathrm{~Hz}, 1 \mathrm{H}$), 3.81 (s, 3 H), 3.94 (d, $J=14.9$ $\mathrm{Hz}, 1 \mathrm{H}$), 4.61 (d, $J=14.9 \mathrm{~Hz}, 1 \mathrm{H}$), 5.16 (quint, $J=6.4 \mathrm{~Hz}$, $1 \mathrm{H}), 6.86(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.15-7.30(\mathrm{~m}, 7 \mathrm{H})$. Anal. Calcd for $\mathrm{C}_{22} \mathrm{H}_{25} \mathrm{NO}_{4} \mathrm{~S}: \mathrm{C}, 66.14 ; \mathrm{H}, 6.31 ; \mathrm{N}, 3.51$. Found: C 66.50 ; H, 6.18; N, 3.52.
(2S,3R)-3-Acetoxy-2-bromo-N-[(4-methoxyphenyl)methyl] N-[2,2-bis(phenylthio)ethenyl]butanamide (39). According to a procedure similar to that described above for 23, enamine 22 ($973 \mathrm{mg}, 2.56 \mathrm{mmol}$) was treated with acid chloride $37^{19}(1.25 \mathrm{~g}, 5.12 \mathrm{mmol})$, and the crude material was chromatographed on silica gel (hexane/AcOEt, 7:1) to give 39 ($1.1 \mathrm{~g}, 73 \%$) as an oil: $\operatorname{IR}\left(\mathrm{CCl}_{4}\right) v 1745,1670 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $(60 \mathrm{MHz}) \delta 1.38(\mathrm{~d}, J=7 \mathrm{~Hz}, 3 \mathrm{H}), 2.07(\mathrm{~s}, 3 \mathrm{H}), 3.77(\mathrm{~s}, 3 \mathrm{H})$, $4.47(\mathrm{~d}, J=9 \mathrm{~Hz}, 1 \mathrm{H}), 4.60,4.83(\mathrm{AB} \mathrm{q}, J=14 \mathrm{~Hz}, 1 \mathrm{H}$ each $)$, $5.2-5.7(\mathrm{~m}, 1 \mathrm{H}), 6.39(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 6.78(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H})$, $6.9-7.4(\mathrm{~m}, 12 \mathrm{H})$. This compound was used immediately in the next step.
$(3 R, 4 R)$ - and (3S,4S)-3-[(R)-1-Acetoxyethyl]-1-[(4-meth-oxyphenyl)methyl]-4-[bis(phenylthio)methyl]-2-azetidinones (41a,b). Following the general procedure, enamide $39(957 \mathrm{mg}, 1.63 \mathrm{mmol})$ was treated with $\mathrm{Bu}_{3} \mathrm{SnH}$ and AIBN in boiling toluene, and the crude material was chromatographed on silica gel (hexane/AcOEt, 5:1) to give an oily mixture of 41 a and $\mathbf{4 1 b}$ ($543 \mathrm{mg}, 64 \%$) in a ratio of ca. 2:1: IR $\left(\mathrm{CCl}_{4}\right)$ v $1755,1740 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR for $41 \mathrm{a}(300 \mathrm{MHz}) \delta 1.36$ (d, $J=6.5 \mathrm{~Hz}, 3 \mathrm{H}$), 1.87 ($\mathrm{s}, 3 \mathrm{H}$), 3.33 (dd, $J=3.6,2.4 \mathrm{~Hz}, 1$ H), $3.60(\mathrm{dd}, J=4.8,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.68(\mathrm{~d}, J=14.9 \mathrm{~Hz}, 1 \mathrm{H})$, $3.79(\mathrm{~s}, 3 \mathrm{H}), 4.44(\mathrm{~d}, J=4.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.70(\mathrm{~d}, J=14.9 \mathrm{~Hz}$, $1 \mathrm{H}), 5.13$ (qd, $J=6.5,3.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.80(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H})$, $7.12(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.2-7.5(\mathrm{~m}, 10 \mathrm{H})$; ${ }^{1} \mathrm{H}$ NMR for 41 b $(300 \mathrm{MHz}) \delta 1.33(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H}), 1.92(\mathrm{~s}, 3 \mathrm{H}), 3.40(\mathrm{dd}$, $J=6.4,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.67(\mathrm{~d}, J=15.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H})$, 3.85 (dd, $J=3.4,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.42(\mathrm{~d}, J=3.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.66$ (d, $J=15.1 \mathrm{~Hz}, 1 \mathrm{H}$), 5.17 (quint, $J=6.4 \mathrm{~Hz}, 1 \mathrm{H}$), 6.84 (d, J $=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.12(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.2-7.5(\mathrm{~m}, 10 \mathrm{H})$.

Anal. Calcd for $\mathrm{C}_{28} \mathrm{H}_{29} \mathrm{NO}_{4} \mathrm{~S}_{2}$: $\mathrm{C}, 66.25 ; \mathrm{H}, 5.76 ; \mathrm{N}, 2.76$. Found: C, 66.67; H, 5.44; N, 2.79.
$(3 R, 4 R)$ - and (3S,4S)-3-[(R)-1-Hydroxyethyl]-1-[(4-meth-oxyphenyl)methyl]-4-[bis(phenylthio)methyl]-2-azetidinones (42a,b). To a solution of $41 \mathrm{a}, \mathrm{b}(319 \mathrm{mg}, 0.64 \mathrm{mmol})$ in pyridine (0.93 mL) was added dropwise a 0.1 N NaOH solution (1.8 mL) over a period of 15 min , and the mixture was stirred at room temperature overnight. A saturated NaHCO_{3} solution (10 mL) was added to the reaction mixture, and the solution was extracted with AcOEt. The organic phase was washed with water, dried $\left(\mathrm{MgSO}_{4}\right)$, and concentrated. The residue was chromatographed on silica gel (hexane/AcOEt, 6:1). The first eluate gave $\mathbf{4 2 a}$ ($112 \mathrm{mg}, 49 \%$): $\mathrm{mp} 128-128.5$ ${ }^{\circ} \mathrm{C}$ (hexane $/ \mathrm{AcOEt}$); $\left.[\alpha]^{24} \mathrm{D}-3.8^{\circ}(c) 1, \mathrm{EtOH}\right)$; $\mathrm{IR}\left(\mathrm{CCl}_{4}\right) \nu 3460$, $1750 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (300 MHz) $\delta 1.30(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H}$, CMe), 2.07-2.17 (br, 1 H), 3.23 (dd, $J=5.8,2.1 \mathrm{~Hz}, 1 \mathrm{H}$), 3.76 (dd, $J=4.6,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}), 3.83(\mathrm{~d}, J=15.1 \mathrm{~Hz}$, $1 \mathrm{H}), 3.96-4.07(\mathrm{~m}, 1 \mathrm{H}), 4.41(\mathrm{~d}, J=4.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.67(\mathrm{~d}, J$ $=15.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.81(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.13(\mathrm{~d}, J=8.7 \mathrm{~Hz}$, 2 H), 7.22-7.33 (m, 10 H). Anal. Calcd for $\mathrm{C}_{26} \mathrm{H}_{27} \mathrm{NO}_{3} \mathrm{~S}_{2}$: C, 67.07; H, 5.84; N, 3.01. Found: C, 67.02; H, 5.87; N, 3.14. The second eluate gave 42 b ($62 \mathrm{mg}, 23 \%$) containing a small quantity of 42a: $\operatorname{IR}\left(\mathrm{CCl}_{4}\right) \nu 3200-3700,1750 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (300 MHz) $\delta 1.27(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H}), 2.05-2.15(\mathrm{br}, 1 \mathrm{H}$), 3.29 (dd, $J=6.1,2.1 \mathrm{~Hz}, 1 \mathrm{H}$), 3.79 (s, 3 H), 3.81 (d, $J=15.1$ $\mathrm{Hz}, 1 \mathrm{H}$), 3.89 (dd, $J=3.8,2.1 \mathrm{~Hz}, 1 \mathrm{H}$), 4.14 (quint, $J=6.2$ $\mathrm{Hz}, 1 \mathrm{H}), 4.44(\mathrm{~d}, J=3.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.67(\mathrm{~d}, J=15.1 \mathrm{~Hz}, 1 \mathrm{H})$, $6.81(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.12(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.20-7.35$ ($\mathrm{m}, 10 \mathrm{H}$); exact mass calcd for $\mathrm{C}_{26} \mathrm{H}_{27} \mathrm{NO}_{3} \mathrm{~S}_{2} 465.1430$, found 465.1416 .
(4R)-(Z)-3-Ethylidene-1-[(4-methoxyphenyl)methyl]-4-[bis(phenylthio)methyl]-2-azetidinone (44). To a solution of $42 \mathrm{a}(40 \mathrm{mg}, 0.086 \mathrm{mmol})$ and triethylamine $(35 \mathrm{mg}, 0.34$ mmol) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$ was added methanesulfonyl chloride ($39 \mathrm{mg}, 0.344 \mathrm{mmol}$) at $0^{\circ} \mathrm{C}$, and the mixture was stirred at room temperature for 3 h . The reaction mixture was washed with water and dried over MgSO_{4}. The solvent was evaporated off, and the residue was chromatographed on silica gel (hexane/ AcOEt, 1:1). The first eluate gave $43 \mathrm{a}(26 \mathrm{mg}, 53 \%$) [$\delta 2.73$ ($\mathrm{s}, 3 \mathrm{H}, \mathrm{SO}_{2} \mathrm{Me}$)]. The second eluate gave recovered 42a (15 $\mathrm{mg}, 38 \%$).

To a solution of $\mathbf{4 3 a}$ ($35 \mathrm{mg}, 0.067 \mathrm{mmol}$) in methanol (3 mL) was added NaHCO_{3} powder (150 mg), and the mixture was heated under reflux for 5 h . Inorganic materials were removed by filtration, and the filtrate was concentrated in vacuo. The residue was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, and the solution was washed with water, dried over MgSO_{4}, and concentrated in vacuo. The residue was chromatographed on silica gel (hexane/AcOEt, 5:1) to give 44 ($18 \mathrm{mg}, 63 \%$) as an oil: IR $\left(\mathrm{CCl}_{4}\right) \nu 1745 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $(60 \mathrm{MHz}) \delta 2.04(\mathrm{~d}, J=7 \mathrm{~Hz}, 3$ $\mathrm{H}), 3.77(\mathrm{~s}, 3 \mathrm{H}), 4.06(\mathrm{~d}, J=15.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.19(\mathrm{br} \mathrm{s}, 1 \mathrm{H})$, $4.42(\mathrm{~d}, J=4 \mathrm{~Hz}, 1 \mathrm{H}), 4.69(\mathrm{~d}, J=15.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.90(\mathrm{q}, J$ $=7 \mathrm{~Hz}, 1 \mathrm{H}), 6.73(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.08(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2$ H), 7.22, 7.25 (both s, total 10 H). Anal. Calcd for $\mathrm{C}_{26} \mathrm{H}_{25}-$ $\mathrm{NO}_{2} \mathrm{~S}_{2}: \mathrm{C}, 69.77 ; \mathrm{H}, 6.03 ; \mathrm{N}, 3.13$. Found: C, 69.57; H, 5.71 ; N, 3.11.
(4S)-(E)-3-Ethylidene-1-[(4-methoxyphenyl)methyl]-4-[bis(phenylthio)methyl]-2-azetidinone (45). According to a procedure similar to that described above for 42a, lactam 42 b ($123 \mathrm{mg}, 0.26 \mathrm{mmol}$) containing a small quantity of 42a was treated with methanesulfonyl chloride ($60 \mathrm{mg}, 0.53 \mathrm{mmol}$), and the crude material was chromatographed on silica gel (hexane/AcOEt, 1:1) to give $\mathbf{4 3 b}$ ($132 \mathrm{mg}, 92 \%$) [$\delta 2.83$ (s, 3 H , $\left.\mathrm{SO}_{2} \mathrm{Me}\right)$]. Following a procedure similar to that described above for 43 a , a solution of $\mathbf{4 3 b}$ ($72 \mathrm{mg}, 0.13 \mathrm{mmol}$) in methanol was heated in the presence of NaHCO_{3}. After workup, the crude material was chromatographed on silica gel (hexane/AcOEt, 3:1). The first eluate gave $44(8 \mathrm{mg}, 14 \%)$ derived from 42a. The second eluate gave 45 ($35 \mathrm{mg}, 59 \%$): $\mathrm{mp} 89.5-92{ }^{\circ} \mathrm{C}$ (hexane/ AcOEt); IR $\left(\mathrm{CCl}_{4}\right) v 1755 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (60 MHz) $\delta 1.73(\mathrm{~d}, J=7 \mathrm{~Hz}, 3 \mathrm{H}$), 3.76 (s, 3 H), 4.13 (d, $J=15.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.40(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 4.54(\mathrm{~d}, J=2 \mathrm{~Hz}, 1 \mathrm{H})$, $4.77(\mathrm{~d}, J=15.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.23(\mathrm{br} \mathrm{q}, J=7 \mathrm{~Hz}, 1 \mathrm{H}), 6.77(\mathrm{~d}$, $J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.13(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.24(\mathrm{~s}, 10 \mathrm{H})$. Anal. Calcd for $\mathrm{C}_{26} \mathrm{H}_{25} \mathrm{NO}_{2} \mathrm{~S}_{2}$: $\mathrm{C}, 69.77$; $\mathrm{H}, 6.03 ; \mathrm{N}, 3.13$. Found: C, 69.99; H, 5.77; N, 3.17.
(2R,3S)-3-Acetoxy-2-bromo- \boldsymbol{N}-[(4-methoxyphenyl)-methyl]-N-[2,2-bis(phenylthio)ethenyl]butanamide (47). According to a procedure similar to that described above for 23, enamine $22(3.02 \mathrm{~g}, 7.9 \mathrm{mmol})$ was treated with acid chloride 46 (for preparation, see text) ($3.33 \mathrm{~g}, 15.8 \mathrm{mmol}$), and the crude material was chromatographed on silica gel (hexane/ AcOEt, 7:1) to give 47 ($3.67 \mathrm{~g}, 79 \%$) as an oil: IR $\left(\mathrm{CCl}_{4}\right) \nu 1745$, $1670 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR (60 MHz) $\delta 1.38(\mathrm{~d}, J=7 \mathrm{~Hz}, 3 \mathrm{H}$), 2.07 $(\mathrm{s}, 3 \mathrm{H}), 3.77(\mathrm{~s}, 3 \mathrm{H}), 4.47(\mathrm{~d}, J=9 \mathrm{~Hz}, 1 \mathrm{H}), 4.60,4.83(\mathrm{ABq}$, $J=14 \mathrm{~Hz}, 1 \mathrm{H}$ each $), 5.2-5.7(\mathrm{~m}, 1 \mathrm{H}), 6.39(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 6.78$ (d, $J=8.5 \mathrm{~Hz}, 2 \mathrm{H}$), $6.9-7.4(\mathrm{~m}, 12 \mathrm{H}$). Anal. Calcd for $\mathrm{C}_{28} \mathrm{H}_{28} \mathrm{BrNO}_{4} \mathrm{~S}_{2}$: C, 57.34; H, 4.81; N, 2.39. Found: C, 57.10; H, 4.93; N, 2.56.
(3S,4S)- and (3R,4R)-3-[(S)-1-Acetoxyethyl]-1-[(4-meth-oxyphenyl)methyl]-4-[bis(phenylthio)methyl]-2-azetidinones (48a,b). Following the general procedure, enamide 47 ($720 \mathrm{mg}, 1.2 \mathrm{mmol}$) was treated with $\mathrm{Bu}_{3} \mathrm{SnH}$ and AIBN in refluxing toluene, and the crude material was chromatographed on silica gel (hexane/AcOEt, 5:1) to give an oily mixture of $\mathbf{4 8 a}$ and $\mathbf{4 8 b}$ ($372 \mathrm{mg}, 60 \%$) in a ratio of ca. $2: 1$. IR and ${ }^{1} \mathrm{H}$ NMR spectra were essentially the same as those of a mixture of 41a and 41b. Anal. Calcd for $\mathrm{C}_{28} \mathrm{H}_{29} \mathrm{NO}_{4} \mathrm{~S}_{2}$: C, $66.25 ; \mathrm{H}, 5.76 ; \mathrm{N}, 2.76$. Found: C, 66.22; H, 5.87; N, 2.94.
(3S,4S)-3-[(S)-1-Hydroxyethyl]-1-[(4-methoxyphenyl)-methyl]-4-[bis(phenylthio)methyl]-2-azetidinone (49). According to a procedure similar to that described above for 42a,b, a mixture of $48 \mathrm{a}, \mathrm{b}$ ($316 \mathrm{mg}, 0.62 \mathrm{mmol}$) was treated with 0.1 N NaOH in pyridine, and the crude material containing alcohol 49 and the corresponding ($3 R, 4 R$)-isomer was recrystallized from hexane/AcOEt to give pure 49 (163 mg , 56%): mp 129.5-130 ${ }^{\circ} \mathrm{C}$ (hexane/AcOEt); $[\alpha]^{24} \mathrm{D}+3.8^{\circ}$ (c 1, EtOH). IR and ${ }^{1} \mathrm{H}$ NMR spectra were essentially the same as those of 42a. Anal. Calcd for $\mathrm{C}_{26} \mathrm{H}_{27} \mathrm{NO}_{3} \mathrm{~S}_{2}: \mathrm{C}, 67.07 ; \mathrm{H}, 5.84$; N, 3.01. Found: C, $66.75 ; \mathrm{H}, 5.78$; N, 3.24 .
(3S,4S)-3-[(S)-1-Hydroxyethyl]-1-[(4-methoxyphenyl)-methyl]-4-[(phenylthio)methyl]-2-azetidinone (50). Bu ${ }_{3}$ $\mathrm{SnH}(828 \mathrm{mg}, 2.8 \mathrm{mmol})$ and AIBN ($38 \mathrm{mg}, 0.23 \mathrm{mmol}$) were added to a solution of 49 ($353 \mathrm{mg}, 0.76 \mathrm{mmol}$) in toluene (50 mL), and the mixture was heated under reflux for 14 h . After usual workup, the crude material was chromatographed on silica gel (hexane/AcOEt, 2:1) to give 50 ($262 \mathrm{mg}, 97 \%$): mp $70-72^{\circ} \mathrm{C}$ (hexane/AcOEt); $\left.[\alpha]^{24} \mathrm{D}+45.0^{\circ}(c) 1, \mathrm{EtOH}\right) ;$ IR $\left(\mathrm{CCl}_{4}\right)$ $\nu 3450,1740 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $(270 \mathrm{MHz}) \delta 1.24(\mathrm{~d}, J=6.3 \mathrm{~Hz}$, 3 H), 2.56-2.65 (br s, 1 H), $2.90(\mathrm{dd}, J=13.9,7.6 \mathrm{~Hz}, 1 \mathrm{H}$), 2.92 (dd, $J=7.3,2.0 \mathrm{~Hz}, 1 \mathrm{H}$), 3.09 (dd, $J=13.9,4.6 \mathrm{~Hz}, 1$ H), 3.50 (ddd, $J=7.6,4.6,2.0 \mathrm{~Hz}, 1 \mathrm{H}$), 3.78 (s, 3 H), $3.90-$ $4.01(\mathrm{~m}, 1 \mathrm{H}), 4.01(\mathrm{~d}, J=15.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.55(\mathrm{~d}, J=15.2 \mathrm{~Hz}$, $1 \mathrm{H}), 6.84(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H})$, 7.15-7.27(m, 7 H$)$. Anal. Calcd for $\mathrm{C}_{20} \mathrm{H}_{23} \mathrm{NO}_{3} \mathrm{~S}: \mathrm{C}, 67.20 ; \mathrm{H}, 6.49 ; \mathrm{N}, 3.92$. Found: C, 66.93; H, 6.66; N, 3.80 .
(3S,4S)-3-[(R)-1-(Formyloxy)ethyl]-1-[(4-methoxyphenyl)methyl $]-4$-[(phenylthio)methyl]-2-azetidinone (51). A solution of diisopropyl azodicarboxylate ($121 \mathrm{mg}, 0.6 \mathrm{mmol}$) in dry THF (0.6 mL) was added dropwise to a solution of $\mathbf{5 0}$ ($107 \mathrm{mg}, 0.3 \mathrm{mmol}$), triphenylphosphine ($157 \mathrm{mg}, 0.6 \mathrm{mmol}$), and formic acid ($28 \mathrm{mg}, 0.6 \mathrm{mmol}$) in dry THF at room temperature, and the mixture was stirred at the same temperature for 2 h . The solvent was evaporated off and the residue was chromatographed on silica gel (hexane/AcOEt, 3:1) to give $51(91 \mathrm{mg}, 79 \%)$ as an oil: $[\alpha]^{22} \mathrm{D}+58.4^{\circ}(c 2, \mathrm{EtOH})$; IR (CCl_{4}) $v 1755,1725 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (270 MHz) $\delta 1.35(\mathrm{~d}, J$ $=6.5 \mathrm{~Hz}, 3 \mathrm{H}), 2.93(\mathrm{dd}, J=13.9,6.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.11(\mathrm{dd}, J=$ $6.5,2.0 \mathrm{~Hz}, 1 \mathrm{H}$), 3.14 (dd, $J=13.9,4.8 \mathrm{~Hz}, 1 \mathrm{H}$), 3.60 (ddd, J $=6.9,4.8,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}), 3.96(\mathrm{~d}, J=14.9 \mathrm{~Hz}, 1$ H), $4.58(\mathrm{~d}, J=14.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.27$ (quint, $J=6.5 \mathrm{~Hz}, 1 \mathrm{H}$), $6.87(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.14-7.30(\mathrm{~m}, 7 \mathrm{H}), 7.92(\mathrm{~s}, 1 \mathrm{H})$. Anal. Caled for $\mathrm{C}_{21} \mathrm{H}_{23} \mathrm{NO}_{4} \mathrm{~S}: \mathrm{C}, 65.43 ; \mathrm{H}, 6.01 ; \mathrm{N}, 3.63$. Found: C, 65.38; H, 5.85; N, 3.70.
(3S,4S)-3-[(R)-1-Hydroxyethyl]-1-[(4-methoxyphenyl)-methyl]-4-[(phenylthio)methyl]-2-azetidinone (52). To a solution of 51 ($91 \mathrm{mg}, 0.24 \mathrm{mmol}$) in methanol (1 mL) was added two drops of $10 \% \mathrm{HCl}$ at $0^{\circ} \mathrm{C}$, and the mixture was stirred at room temperature for 4 h . After completion of hydrolysis, brine (5 mL) was added to the reaction mixture, and the solution was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The organic phase was dried over MgSO_{4} and concentrated in vacuo, and
the residue was chromatographed on silica gel (hexane/AcOEt, 2:1) to give 52 ($81 \mathrm{mg}, 96 \%$): $\mathrm{mp} 90-90.5^{\circ} \mathrm{C}$ (hexane/AcOEt); $[\alpha]^{23}{ }_{\mathrm{D}}+34.4^{\circ}(\mathrm{c} 1, \mathrm{EtOH}) ; \operatorname{IR}\left(\mathrm{CCl}_{4}\right) v 3600,1735 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $(270 \mathrm{MHz}) \delta 1.25(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 3 \mathrm{H}), 1.91(\mathrm{br} \mathrm{d}, J=4.6 \mathrm{~Hz}$, 1 H), 2.91 (dd, $J=13.9,7.6 \mathrm{~Hz}, 1 \mathrm{H}$), 2.96 (br dd, $J=\mathrm{ca} .5 .5$, $2.0 \mathrm{~Hz}, 1 \mathrm{H}$), 3.13 (dd, $J=13.9,4.6 \mathrm{~Hz}, 1 \mathrm{H}$), 3.65 (ddd, $J=$ $7.6,4.6,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 4.02(\mathrm{~d}, J=14.8 \mathrm{~Hz}, 1 \mathrm{H})$, 4.11 (br sextet, $J=5.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.58(\mathrm{~d}, J=14.8 \mathrm{~Hz}, 1 \mathrm{H})$, $6.86(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.15-7.30(\mathrm{~m}, 7 \mathrm{H})$. Anal. Calcd for $\mathrm{C}_{20} \mathrm{H}_{23} \mathrm{NO}_{3} \mathrm{~S}: \mathrm{C}, 67.20 ; \mathrm{H}, 6.48$; N, 3.92. Found: C, $66.85 ; \mathrm{H}$, 6.57; N, 3.77.
(3S,4S)-3-[(R)-1-[(tert-Butyldimethylsilyl)oxy]ethyl]-1-[(4-methoxyphenyl)methyl]-4-[(phenylthio)methyl]-2azetidinone (53). To a solution of $52(218 \mathrm{mg}, 0.61 \mathrm{mmol})$ in DMF (7.6 mL) were added successively tert-butyldimethylsilyl chloride ($257 \mathrm{mg}, 1.7 \mathrm{mmol}$) and imidazole ($291 \mathrm{mg}, 4.3$ mmol), and the mixture was stirred at room temperature overnight. Ethyl acetate (20 mL) was added to the reaction mixture, and the solution was washed with water and dried over MgSO_{4}. The solvent was evaporated off and the residue was chromatographed on silica gel (hexane/AcOEt, $4: 1$) to give $53(259 \mathrm{mg}, 90 \%)$ as an oil: $[\alpha]^{22} \mathrm{D}+16.3^{\circ}(c 1, \mathrm{EtOH})$; $\mathrm{IR}\left(\mathrm{CCl}_{4}\right)$ $\nu 1755 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (270 MHz) $\delta-0.01(\mathrm{~s}, 3 \mathrm{H}), 0.03(\mathrm{~s}, 3 \mathrm{H})$, $0.81(\mathrm{~s}, 9 \mathrm{H}), 1.18(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 3 \mathrm{H}), 2.90-2.94(\mathrm{~m}, 1 \mathrm{H})$, 2.95 (dd, $J=13.9,6.6 \mathrm{~Hz}, 1 \mathrm{H}$), 3.07 (dd, $J=13.9,5.3 \mathrm{~Hz}, 1$ H), 3.76 (ddd, $J=6.6,5.3,2.0 \mathrm{~Hz}, 1 \mathrm{H}$), 3.81 (s, 3 H), 4.09$4.19(\mathrm{~m}, 1 \mathrm{H}), 4.11(\mathrm{~d}, J=15.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.49(\mathrm{~d}, J=15.2 \mathrm{~Hz}$, $1 \mathrm{H}), 6.85(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.15-7.30(\mathrm{~m}, 7 \mathrm{H})$. Anal. Calcd for $\mathrm{C}_{26} \mathrm{H}_{37} \mathrm{NO}_{3} \mathrm{SSi}: \mathrm{C}, 66.20 ; \mathrm{H}, 7.91 ; \mathrm{N}, 2.97$. Found: C, 65.86; H, 7.58; N, 2.70 .
(2S,3S)-3-[(R)-1-[(tert-Butyldimethylsilyl)oxylethyl]-1-[(4-methoxyphenyl)methyl]-4-oxo-2-azetidinecarboxaldehyde (54). According to a procedure similar to that described above for the preparation of 31 from 14, compound $53(238 \mathrm{mg}, 0.51 \mathrm{mmol})$ was oxidized with m-CPBA (80%) (109 $\mathrm{mg}, 0.51 \mathrm{mmol}$), and the resulting sulfoxide was treated successively with TFAA ($212 \mathrm{mg}, 1.01 \mathrm{mmol}$) in the presence of 2,6-lutidine ($108 \mathrm{mg}, 1.01 \mathrm{mmol}$) and then with aqueous NaHCO_{3} solution. After workup, the crude material was chromatographed on silica gel (hexane/AcOEt, 5:1) to give aldehyde $54\left(189 \mathrm{mg}, 99 \%\right.$ based on 53) as an oil: $[\alpha]^{22} \mathrm{D}+11.0^{\circ}$ (c $0.39, \mathrm{EtOH}) ;$ IR $\left(\mathrm{CCl}_{4}\right) v 1765,1730 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (270 $\mathrm{MHz}) \delta 0.07(\mathrm{~s}, 3 \mathrm{H}), 0.08(\mathrm{~s}, 3 \mathrm{H}), 0.86(\mathrm{~s}, 9 \mathrm{H}), 1.19(\mathrm{~d}, J=6.3$ $\mathrm{Hz}, 3 \mathrm{H}$), 3.11 (br t, $J=\mathrm{ca} .3 .0 \mathrm{~Hz}, 1 \mathrm{H}$), 3.80 (s, 3 H), 4.04 (br $\mathrm{t}, J=\mathrm{ca} .3 .0 \mathrm{~Hz}, 1 \mathrm{H}), 4.1-4.4(\mathrm{~m}, 1 \mathrm{H}), 4.37,4.45(\mathrm{ABq}, J=$ $14.5 \mathrm{~Hz}, 1 \mathrm{H}$ each), 6.85 (d, $J=8.6 \mathrm{~Hz}, 2 \mathrm{H}$), 7.17 (d, $J=8.6$ $\mathrm{Hz}, 2 \mathrm{H}), 9.40(\mathrm{~d}, J=3.3 \mathrm{~Hz}, 1 \mathrm{H})$. Anal. Calcd for $\mathrm{C}_{20} \mathrm{H}_{31^{-}}$ $\mathrm{NO}_{4} \mathrm{Si}: \mathrm{C}, 63.63 ; \mathrm{H}, 8.28$; N, 3.71. Found: C, $63.31 ; \mathrm{H}, 8.44$; N, 3.78.
(2S,3S)-3-[(R)-1-[(tert-Butyldimethylsilyl)oxy]ethyl]-1-[(4-methoxyphenyl)methyl]-4-oxo-2-azetidinecarboxylic Acid (55). A mixture of $\mathrm{KMnO}_{4}(179 \mathrm{mg}, 1.13 \mathrm{mmol})$ and
$\mathrm{K}_{2} \mathrm{CO}_{3}(235 \mathrm{mg}, 1.7 \mathrm{mmol})$ in water (3 mL) was added to a solution of 54 ($107 \mathrm{mg}, 0.28 \mathrm{mmol}$) in THF (4 mL), and the mixture was stirred at room temperature for 15 h under a nitrogen atmosphere. The precipitated inorganic materials were filtered off, and THF was removed by evaporation. Water (5 mL) was added to the residue, and the solution was washed with diethyl ether to remove neutral compounds. The aqueous phase was acidified to pH 4 with 6 N HCl , and the solution was extracted with diethyl ether. The organic phase was dried over MgSO_{4} and concentrated in vacuo to give 55 (108 mg , 97%): mp 104.5-105 ${ }^{\circ} \mathrm{C}$ (hexane) [lit. $\left.{ }^{23} \mathrm{mp} 107-109^{\circ} \mathrm{C}\right] ;[\alpha]^{22} \mathrm{D}$ $+17.5^{\circ}(\mathrm{c} 0.4, \mathrm{EtOH})$; $\mathrm{IR}(\mathrm{KBr}) v 1755,1715 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $(270 \mathrm{MHz}) \delta 0.05(\mathrm{~s}, 3 \mathrm{H}), 0.07(\mathrm{~s}, 3 \mathrm{H}), 0.83(\mathrm{~s}, 9 \mathrm{H}), 1.21(\mathrm{~d}, J$ $=6.3 \mathrm{~Hz}, 3 \mathrm{H}), 3.27(\mathrm{dd}, J=3.3,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H})$, $4.11(\mathrm{~d}, J=2.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.16$ (d, $J=14.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.29(\mathrm{qd}$, $J=6.3,3.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.71(\mathrm{~d}, J=14.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.85(\mathrm{~d}, J=$ $8.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.19(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H})$. Anal. Calcd for $\mathrm{C}_{20} \mathrm{H}_{31^{-}}$ NO_{5} Si: C, $61.04 ; \mathrm{H}, 7.94 ; \mathrm{N}, 3.56$. Found: C, 60.58 ; H, 8.00 ; N, 3.53.
($\mathbf{3 R}, 4 R$)-4-Acetoxy-3-[(R)-1-[(tert-Butyldimethylsilyl)-oxylethyl]-1-[(4-methoxyphenyl)methyl]-2-azetidinone (56). To a solution of 55 ($56 \mathrm{mg}, 0.14 \mathrm{mmol}$) in DMF (3 mL) were added successively acetic acid $(0.75 \mathrm{~mL})$ and $\mathrm{Pb}(\mathrm{OAc})_{4}$ $(90 \%)(700 \mathrm{mg}, 1.42 \mathrm{mmol})$, and the mixture was heated at 65 ${ }^{\circ} \mathrm{C}$ for 2 h under a nitrogen atmosphere. Water (7 mL) was added to the reaction mixture, and the solution was extracted with diethyl ether. The organic phase was washed with a saturated NaHCO_{3} solution and dried over MgSO_{4}. The solvent was evaporated off and the residue was chromatographed on silica gel (hexane/AcOEt, 10:1) to give $\mathbf{5 6}^{23}(39 \mathrm{mg}$, 67%) as an oil, whose spectral properties were virtually identical to those reported in the literature: ${ }^{23}[\alpha]^{22} \mathrm{D}+7.7^{\circ}(c$ $0.4, \mathrm{EtOH}) ;$ IR $\left(\mathrm{CCl}_{4}\right) v 1770,1750 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (270 MHz) $\delta 0.01(\mathrm{~s}, 3 \mathrm{H}), 0.05(\mathrm{~s}, 3 \mathrm{H}), 0.83(\mathrm{~s}, 9 \mathrm{H}), 1.22(\mathrm{~d}, J=6.3 \mathrm{~Hz}$, $3 \mathrm{H}), 1.89(\mathrm{~s}, 3 \mathrm{H}), 3.12(\mathrm{br} \mathrm{d}, J=3.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H})$, $4.18(\mathrm{qd}, J=6.3,3.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.26,4.36(\mathrm{AB} \mathrm{q}, J=15.2 \mathrm{~Hz}$, 1 H each), 6.07 (br s, 1 H), 6.84 (d, $J=8.6 \mathrm{~Hz}, 2 \mathrm{H}$), 7.21 (d, J $=8.6 \mathrm{~Hz}, 2 \mathrm{H}$).

Acknowledgment. This work was supported by a Grant-in-Aid for Scientific Research from the Ministry of Education, Science and Culture of Japan.

Supplementary Material Available: ${ }^{1} \mathrm{H}$ NMR spectra of 13, 15, N-ethenyl- N-[(4-methoxyphenyl)methyl]butanamide, 31, 33, 34, 35, 38, 39, 42b, and 56 (11 pages). This material is contained in libraries on microfiche, immediately follows this article in the microfilm version of the journal, and can be ordered from the ACS; see any current masthead page for ordering information.
JO941695N

[^0]: ${ }^{\otimes}$ Abstract published in Advance ACS Abstracts, February 15, 1995.
 (1) (a) Sato, T.; Wada, Y.; Nishimoto, M.; Ishibashi, H.; Ikeda, M J. Chem. Soc., Perkin Trans. 1 1989, 879. (b) Ishibashi, H.; So, T. S.; Okochi, K.; Sato, T.; Nakamura, N.; Nakatani, H.; Ikeda, M. J. Org. Chem. 1991, 56,95 . (c) Sato, T.; Ishida, S.; Ishibashi, H.; Ikeda, M. J. Chem. Soc., Perkin Trans. 1 1991, 353. (d) Sato, T. Tsujimoto, K.; Matsubayashi, K.; Ishibashi, H.; Ikeda, M. Chem. Pharm. Bull. 1992, 40, 2308. (e) Ishibashi, H.; Uemura, N.; Nakatani, H.; Okazaki, M.; Sato, T.; Nakamura, N.; Ikeda, M. J. Org. Chem. 1993, 58, 2360.
 (2) Ishibashi, H.; Nakamura, N.; Sato, T.; Takeuchi, M.; Tkeda, M. Tetrahedron Lett. 1991, 32, 1725. Sato, T.; Nakamura, N.; Ikeda, K.; Okada, M.; Ishibashi, H.; Ikeda, M. J. Chem. Soc., Perkin Trans. I 1992, 2399.

[^1]: (3) Fremont, S. L.; Belletire, J. L.; Ho, D. M. Tetrahedron Lett. 1991, 32, 2335.
 (4) For a preliminary account of a portion of this work, see: Ishibashi, H.; Kameoka, C.; Yoshikawa, A.; Ueda, R.; Kodama, K.; Sato, T.; Ikeda, M. Synlett 1993, 649.

[^2]: (5) Ishibashi, H.; Nakamura, N.; Ito, K.; Kitayama, S.; Ikeda, M. Heterocycles 1990, 31, 1781.
 (6) ${ }^{1} \mathrm{H}$ NMR for $22\left(\mathrm{CDCl}_{3}, 60 \mathrm{MHz}\right) \delta 3.72$ ($\mathrm{s}, 3 \mathrm{H}$), 4.15 (d, $J=6$ $\mathrm{Hz}, 2 \mathrm{H}$), $5.0-5.7$ (br, 1 H), $6.7-7.5$ (m, 15 H). Formation of enamines of type 22 from bis(ethylthio)acetaldehyde and primary amines was reported, see: Bates, G.S.; Ramaswamy, S. Can. J. Chem. 1983, 61, 2466.

[^3]: (11) Peterson, D. J. J. Org. Chem. 1968, 33, 780. Hudrick, P. F.; Peterson, D.; Rona, R. J. J. Org. Chem. 1975, 40, 2263.
 (12) Mukai, C.; Kataoka, O.; Hanaoka, M. J. Chem. Soc., Perkin Trans. 1 1993, 563.
 (13) Favara, D.; Omodei-Sale, A.; Consonni, P.; Depaoli, A. Tetrahedron Lett. 1982, 23, 225.
 (14) For a review on the synthesis of PS-5 and related carbapenem compounds, see: Palomo, C. In Recent Progress in the Chemical Synthesis of Antibiotics; Lukacs, G., Ohno, M., Ed.; Springer-Verlag: Berlin-Heidelberg, 1990; pp 565-612.
 (15) For reviews, see; Porter, N. A.; Giese, B.; Curran, D. P. Acc. Chem. Res. 1991, 24, 296. Smadja, W. Synlett 1994, 1.
 (16) For recent references to the studies on controlling stereochemistry in radical addition and cyclization reactions, see: Thoma, G.; Curran, D. P.; Geib, S. V.; Giese, B.; Damm, W.; Wetterich, F. J. Am. Chem. Soc. 1993, 115, 8585 . Toru, T.; Watanabe, Y.; Tsusaka, M.; Ueno, Y. J. Am. Chem. Soc. 1993, 115, 10464 . Giese, B.; Hoffmann, U.; Roth, M.; Velt, A. Wyss, C.; Zehnder, M.; Zipse, H. Tetrahedron Lett. 1993, 34, 2445. Giese, B.; Damm, W.; Wetterich, F.; Zeltz, H.-G.; Rancourt, J.; Gulndon, Y. Tetrahedron Lett. 1993, 34, 5885. Curran, D. P.; Sun, S. Tetrahedron Lett. 1993, 34, 6184. Curran, D. P.; Abraham, A. C. Tetrahedron 1993, 49, 4821. Curran, D. P.; Ramamoorthy, P. S. Tetrahedron 1993, 49, 4841. Beckwith. A. L. J.; Chai, C. L. L. Tetrahedron 1993, 49, 7871. Renaud, P.; Carrupt, P.-A.; Gerster, M.; Schenk, K. Tetrahedron Lett. 1994, 35, 1703 . Curran, D. P.; Geib, S. J.; Lin, C.-H. Tetrahedron Asymmetry 1994, 5, 199. Zahouily, M.; Journet, M.; Malacria, M. Synlett 1994, 366.

[^4]: (17) Albers-Schonberg, G.; Arison, B. H.; Hensens, O. D.; Hirshfield, J.; Hoogsteen, K.; Kaczka, E. S.; Rhodes, R. E.; Kahan, J. S.; Kahan, F. M.; Ratcliffe, R. W.; Walton, E.; Ruswinkle, L. J.; Morin, R. B.; Christensen, B. G. J. Am. Chem. Soc. 1978, 100, 6491. Kahan, J. S.; Kahan, F. M.; Goegelman, R.; Currie, S. A.; Jackson, M.; Stapley, E. O.; Miller, T. W.; Miller, A. K.; Hendlin, C.; Mochales, S.; Hernandez, S.; Woodruff, H. B.; Birnbaum, J. J. Antibiot. 1979, 32, 1.
 (18) For a review of enantioselective synthesis of carbapenem antibiotics including (+)-thienamycin, see: Nagahara, T.; Kametani, T. Heterocycles 1987, 25, 729.
 (19) Shiozaki, M.; Hiraoka, T. Tetrahedron 1982, 38, 3457.
 (20) Johnston, D. B. R.; Schmitt, S. M.; Bouffard, F. A.; Christensen, B. G. J. Am. Chem. Soc. 1978, 100, 313. See also Georg, G. I.; Kant, J.; Gill, H. S. J. Am. Chem. Soc. 1987, 109, 1129.

[^5]: (23) Maruyama, H.; Shiozaki, M.; Hiraoka, T. Bull. Chem. Soc. Jpn. 1985, 58, 3264.
 (24) Toyoshima, K.; Okuyama, T.; Fueno, T. J. Org. Chem. 1978, 43, 2789.

[^6]: (25) Campbell, M. M.; Jigajnni, V. B.; MacLean, K. A.; Wightman, R. H. Tetrahedron Lett. 1980, 21, 3305.

